Geometry without Topology
نویسنده
چکیده
The proper Euclidean geometry is considered to be metric space and described in terms of only metric and finite metric subspaces (σ-immanent description). Constructing the geometry, one does not use topology and topological properties. For instance, the straight, passing through points A and B, is defined as a set of such points R that the area S(A,B,R) of triangle ABR vanishes. The triangle area is expressed via metric by means of the Hero’s formula, and the straight appears to be defined only via metric, i.e. without a reference to (topological) concept of curve. (Usually, the straight is defined as the shortest curve, connecting two points A and B). Such a construction of geometry is free from such restrictions as continuity and dimensionality of the space which are generated by a use of topology but not by the geometry in itself. At such a description all information on the geometry properties (such as uniformity, isotropy, continuity and degeneracy) is contained in metric. The Riemannian geometry is constructed by two different ways: (1) by conventional way on the basis of metric tensor, (2) as a result of modification of metric in the σ-immanent description of the proper Euclidean geometry. The two obtained geometries are compared. The convexity problem in geometry and the problem of collinearity of vectors at distant points are considered. The nonmetric definition of curve is shown to be a concept of the proper Euclidean geometry which is inadequate to any non-Euclidean geometry
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملConstruction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications
Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...
متن کاملCrisis in the geometry development and its social consequences
The reasons of the crisis in the contemporary (Riemannian) geometry are discussed. The conventional method of the generalized geometries construction, based on a use of the topology, leads to a overdetermination of the Riemannian geometry. In other words, at the Riemannian geometry construction one uses the needless information (topology), which disagrees with other original axioms. The crisis ...
متن کاملRelative volume comparison theorems in Finsler geometry and their applications
We establish some relative volume comparison theorems for extremal volume forms of Finsler manifolds under suitable curvature bounds. As their applications, we obtain some results on curvature and topology of Finsler manifolds. Our results remove the usual assumption on S-curvature that is needed in the literature.
متن کاملISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES USING LEVEL SET METHOD INCORPORATING SENSITIVITY ANALYSIS
This study focuses on the topology optimization of structures using a hybrid of level set method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the topology optimization problem is formulated using the LSM based on the shape gradient. The shape gradient easily handles boundary propagation with topological changes. In the LSM, the topological gradient method as ...
متن کامل